

http://natscience.jspi.uz

No5/3(2021)

biology chemistry geography

O'ZBEKISTON RESPUBLIKASI OLIY VA O'RTA MAXSUS TA'LIM VAZIRLIGI

ABDULLA QODIRIY NOMIDAGI JIZZAX DAVLAT PEDAGOGIKA INSTITUTI TABIIY FANLAR FAKULTETI

dotsenti, kimyo fanlari nomzodi

DAMINOV G'ULOM NAZIRQULOVICH

tavalludining 60 yilligiga bag'ishlangan

onlayn konferensiya materiallari

Jizzax-2021

ТАХРИР ХАЙЪАТИ

Бош мухаррир -

У.О.Худанов

т.ф.н., доц.

Бош мухаррир ёрдамчиси-Д.К.Мурадова,

PhD, доц.

Масъул котиб-

Д.К.Мурадова

Муассис-Жиззах давлат педагогика институти

Журнал 4 марта чикарилади

(хар чоракда)

Журналда чоп этилган маълумотлар аниклиги ва тўғрилиги учун муаллифлар масъул

Журналдан кўчириб босилганда манбаа аниқ кўрсатилиши шарт

ТАХРИРИЯТ АЪЗОЛАРИ

- 1. Худанов У.О. ЖДПИ Табиий фанлар факултети декани,т.ф.н., доц.
- 2. Шилова О.А.-д.х.н., профессор Института химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН)
- 3. Маркевич М.И.-ф.ф.д. проф Белорусия ФА
- 4. Elbert de Josselin de Jong- προφεссор, Niderlandiya
- 5. Кодиров Т-ТТЕСИ к.ф.д, профессор
- 6. Абдурахмонов Э СамДУ к.ф.д., профессор
- 7. Сманова З.А,-ЎзМУ к.ф.д., профессор
- 8. Султонов М-ЖДПИ к.ф.д,доц
- 9. Яхшиева 3- ЖДПИ к.ф.д, проф.в.б.
- 10. Рахмонкулов У- ЖДПИ б.ф.д., проф.
- 11. Мавлонов Х- ЖДПИ б.ф.д.,проф
- 12. Муродов К-СамДУ к.ф.н., доц.
- 13. Абдурахмонов F- ЎзМУ фалсафа фанлари доктори (кимё бўйича) (PhD), доц
- 14. Хакимов К ЖДПИ г.ф.н., доц.
- 15. Азимова Д- ЖДПИ фалсафа фанлари доктори (биология бўйича) (PhD), доц
- 16. Юнусова Зебо ЖДПИ к.ф.н., доц.
- 17. Гудалов М- ЖДПИ фалсафа фанлари доктори (география фанлари бўйича) (PhD)
- 18. Мухаммедов О- ЖДПИ г.ф.н., доц
- 19. Хамраева Н- ЖДПИ фалсафа фанлари доктори (биология фанлари бўйича) (PhD)
- 20. Рашидова К- ЖДПИ фалсафа фанлари доктори (кимё бўйича) (PhD), доц
- **21**. Мурадова Д- ЖДПИ фалсафа фанлари доктори (кимё фанлари бўйича) (PhD), доц

Жиззах давлат педагогика институти Табиий фанлар факултети

Табиий фанлар-Journal of Natural Science-электрон журнали

/http/www/natscience.jspi.uz

"Journal of Natural Science" №5/3 2021 y. http://natscience.jspi.uz

ДУБЛЕНИЯ ЭКСТРАКТАМИ РАСТЕНИЙ

Худанов У.О. -доцент,к.т.н. ДЖГПИ Умматова Д. - асистент ДЖГПИ uhudanov@ mail.ru

Проникновение таннидов в кожу вызывает изменение ее окраски, которое начинается с поверхностных слоев и постепенно достигает внутренних. Это изменение окраски называют прокрасом голья, а глубину проникновения таннидов, выраженную в процентах ко всей толщине дермы.

На процесс дубления и качество готовой кожи значительно влияет не только природа дубителя, но и подготовленность голья к дублению. Для нормального проведения дублении необходимо создать определенную проницаемость голья для частиц дубителя, доступность тонкой структуры коллагена для взаимодействия с дубящими веществами.

Растений в которых содержатся танниды, используются в кожевенной и меховой промышленности дубления, называются дубильными ДЛЯ материалами. Водные вытяжки, полученные из дубильных материалов, упаренные до требуемой концентрации или высушенные до твердого дубильными состояния, называют экстрактами. Основным растительных дубителей являются: ива, дуб, лиственница, чернильные орешки (китайские орешки) и др.

По данным, дубящие вещества взаимодействуют, главным образом, с надмолекулярными структурными единицами коллагена-фибриллами, представляющими четвертичный уровень структуры коллагена

Свойства кожи в значительной степени определяются свойствами коллагеновых волокон. В связи с этим многими отечественными и зарубежными исследователями изучались изменения свойств коллагеновых волокон в зависимости от ряда технологических факторов и условий образования о живом организме.

Однако имеющихся в литературе данных о свойствах коллагеновых волокон дубленных экстрактами растений оказалось недостаточно. Для того, чтобы судить о степени обратимости ряда воздействий, особенно щелочей, которые при длительных обработках интенсивно влияют на коллаген.

У молекулярной частицы коллагена с одного конца имеется аминная группа —NH₂, которая в водной среде превращается в группу —NH₃OH и обладает основными свойствами, а с другого конца - карбоксильная группа — СООН, определяющая кислотные свойства. Известно, что в водной среде и аминная, и карбоксильная группы способны к диссоциации, т. е. полипептидная цепь молекулы коллагена является носителем положительных и отрицательных

"Journal of Natural Science" №5/3 2021 y. http://natscience.jspi.uz

зарядов одновременно. Дублению проводили в экстрактами растений растущих в Джиззакском регионе

В данной работе изучались свойства коллагеновых волокон из голья, которое подвергалось длительному дублению в экстрактами растений изучались упругость, эластическая, пластическая и полная деформации волокон, сопротивление разрыву и удлинение при разрыве, изменение размеров волокон различного метода дубления.

Подготовку коллагеновых волокон к дублению проводили по следующим вариантам.

Вариант 1. Пикелование. Обеззоленные, промытые коллагеновые волокна обрабатывали в течение 50 мин при 23° С (ж. к.=1) пикельным раствором: Ca(OH) -5%, CH3 COOH -4 % от массы волокон.

Вариант 2. Дубление с пикельной подготовкой, температура 33° С.

Вариант 3. Дубление с эмульсионной подготовкой температура 48° С.

Во всех вариантах дубления применяли экстракти растений основностью 65%. Расход дубящих соединений растений составлял 5% от массы волокон продолжительность обработки -12 ч. После каждой обработки образцы промывали дистиллированной водой.

Определено растительный дубитель таннидной составом достаточно равномерно обволакивает фибриллы, незначительно дубит их поперечную полосатость. Определено полученных образцах кожи упругость, эластичност, пластичност и сопротивление разрыву и удлинение при разрыве. По всем требованием готовая кожа по нашему технологию соответствовала по госту.

Литература

- 1. Михайлов А. II. Коллаген кожного покрова и основы его переработки. М., индустрия, 2017. 528 с.
- 2. Зайдес А. Л. Структура коллагена и ее изменения при обработках. М., Ростехиздат, 2016. 262 с.
- 3. Журналь. Известия. ВУЗов. 2010г. №4. С.41-43.
- 4. Журналь. Известия. ВУЗов. 1966г. №1. С.42-50